
Nebencal code update

Anne Bauer
February 28, 2014

Ubercal algorithm: relative calibration

mag measurements
mag errorsdependence on

position, airmass, etc.

zeropoints

matrix equation:
Ax = b

Algorithm

• Calibrate assuming that the weighted mean of “good” mags is the truth

• Minimize relative offset between observations

• Absolute calibration

• Include PreCam (and/or SDSS, ...) standards as if from one image

• At the end, normalize all ZPs -= ZP(PreCam) to make a calibration pegged
to the PreCam data

Nebencal algorithm

• Inspired by LSST’s implementation

• Limit memory usage by pixelizing the sky via Healpix

• Calibrate each pixel plus neighbors in one übercal (~tens of degrees,
customizable size)

• At the end, do another übercal to normalize these pixel regions together

Nebencal algorithm

• Inspired by LSST’s implementation

• Limit memory usage by pixelizing the sky via Healpix

• Calibrate each pixel plus neighbors in one übercal (~tens of degrees,
customizable size)

• At the end, do another übercal to normalize these pixel regions together

Nebencal algorithm

• Inspired by LSST’s implementation

• Limit memory usage by pixelizing the sky via Healpix

• Calibrate each pixel plus neighbors in one übercal (~tens of degrees,
customizable size)

• At the end, do another übercal to normalize these pixel regions together

Nebencal algorithm

• Inspired by LSST’s implementation

• Limit memory usage by pixelizing the sky via Healpix

• Calibrate each pixel plus neighbors in one übercal (~tens of degrees,
customizable size)

• At the end, do another übercal to normalize these pixel regions together

Implementation: Config yaml file

Implementation: a couple of details

• First step, pre-calibration: match across exposures and make global objects.
Saved in one binary file per Healpix pixel (in the highest pixel resolution I plan
on using. The code degrades this file resolution to whatever is desired.)

• Per detection: mag_psf & error, image & exposure ids, rasicam info. as yet
unused: x, y, ccd, everything else in the DB...

• Next, just run: nebencal.py config.yaml

• I have my code in a git repository, let me know if you’d like access.

Implementation: a couple of details

• Written in python

• Uses sparse matrices to do the work: scipy.sparse.linalg

• The exposure calibration takes some (4-5ish) hours on one processor. The
image calibration takes <1 hour. (For the equatorial region, per filter, without
cuts on number of detections)

• Python multiprocessing module doesn’t work with CBLAS functions. I may
try harder to parallelize the code.

• Takes ~6GB memory per run (exposure calibration limited), but I think it
should be 2-3x less...

g band RMS of each objects’ mag measurements

• Relative mag precision 6.4% calibrated to 0.75%

Absolute calibration is working
 (but sensitive to outliers)

• g-band using PreCam as standard objects, checking against SDSS as “truth”

• Note final median is still off due to outliers... a solution is in the works.

Absolute calibration vs DES magnitude

• DES-SDSS vs DES, before and after g-band calibration

Position dependence of absolute residuals

• The worst residuals are from disjoint regions

Plan to check for disjoint regions

• I’m putting in a check to see if the graph of, e.g., image_id connections
contains disconnected regions

• scipy.sparse.cs_graph_components

• If we require coverage by standards and a region is disjoint from the
standards, it will be removed from the calculation and flagged uncalibrated.

• Should help outlier rate and absolute calibration accuracy

Focal plane dependence of residuals: g band

Focal plane dependence of residuals: i band

Focal plane dependence of residuals: g band

Future work

• outlier rejection on variable stars, bad measurements, etc.

• could compute zp error estimates

• exclude edges of chip? additional quality cuts?

